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The propagation of a strong shock wave in a porous material takes place when the latter 
is used as a protective shield against shock or explosion, and also in powder metallurgy dur- 
ing the dynamic impact or explosive forming of porous metals and metal powders [i]. It is 
often necessary to optimize particular structures or processes in such cases [2]. In the 
present article we formulate a number of optimal control problems on the basis of a theoreti- 
cal analysis of one-dimensional impact onto an inhomogeneous porous material and give a solu- 
tion of the kinetic-energy optimization problem for an inhomogeneous porous barrier. 

STRONG SHOCK WAVE IN A POROUS MATERIAL 

The compaction of a porous material is customarily described by equations of state that 
have a complicated form and a restricted domain of application [3, 4]. The situation is sim- 
plified in the case of a strong shock wave, in which the pores collapse irreversibly during 
compaction. To describe the flow after the first shock wave we use the equation of state 
for a nonporous material. We assume that the subsequent variation of the specific volume 
is small in comparison with the specific volume of the nonporous material. We introduce the 
following notation: the pressure Pl in a shock wave that compacts the porous material to 
the density of the nonporous material under standard conditions; a characteristic pressure 
P2 such that the specific volume of the continuous material undergoes, say, a twofold varia- 
tion. The relation Pl << P2 holds for many materials. For example, in the case of iron with 
a porosity (ratio of the density of the porous material to the density of the nonporous materi- 
al) in the interval 0.6-1, we have Pl ~ 1 GPa [5] and P2 - 102-103 GPa. Consequently, the 
pressure range in which the above-stated assumptions are valid is fairly broad (see also [6]). 

We consider a strong shock wave in a porous material having an initial volume v 0 = v0/~, 
where v 0 is the specific volume of the nonporous material under standard conditions and ~ is 
the porosity. The initial values of the pressure and internal energy are taken equal to zero, 
and the surface energy of the pores (or powder grains) is neglected. When the nonporous + ma- 
terial obeys the relation D = c + su (D is the velocity of the shock front, u is the particle 
velocity belhind the front, and c, s are constants), we obtain a shock-adiabatic equation that 
well describes the compression of porous materials in a strong shock wave: 

, ( 1 )  
P "  = [ ~ o  - s ( ~ o  - . n ) ]  ~ t - PH) 

w h e r e  VH a n d  PH a r e  t h e  s p e c i f i c  v o l u m e  and  p r e s s u r e  on t h e  s h o c k  a d i a b a t  and  ~0 i s  t h e  
G r u n e i s e n  c o n s t a n t  u n d e r  s t a n d a r d  c o n d i t i o n s .  

I n  t h e  p r e s s u r e  r a n g e  o f  i n t e r e s t  

Iv0 -- vl << v0. (2) 

We shall use Lagrangian coordinates (m, t) below, where m is the total mass of one square 
meter of the wall layer between the boundary of the barrier and a given cross section, and 
t is the time. Let ms be the Lagrangian coordinate of the shock front. An expression for the 
velocity of the shock front in the porous material follows from Eqs. (i) and (2) and the rela- 
tions at the shock front: 
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PH ) 1/2 e a (1 -- a) 
m s = a . p n + 6 . \  / , a = - -  6---- v~ % '  a (3) 

After the compaction of the porous material by the shock wave, its subsequent behavior 
is adequately described under condition (2) by the isentrope passing through the point (PH, 
vH). From the isentropicity condition dE = -pdv, Eq. (i), and the equation of state used in 
[5] for a nonporous material we obtain the isentropic equation for the shock-compressed por- 
ous material in the approximation (2): 

p = a ~ ( V o - - V ) +  7 ~ PH. (4) 

Equations (3) and (4) are valid for a material of arbitrary porosity. 

ONE-DIMENSIONAL IMPACT ONTO AN INHOMOGENEOUS POROUS MATERIAL 

For the postshock region we write the equations 

ovlat = aulam~ & / a t  = - a p l a m .  ( 5 )  

E l i m i n a t i n g  u and v f rom Eqs.  (4 )  and ( 5 ) ,  we o b t a i n  e q u a t i o n s  d e s c r i b i n g  t h e  p r e s s u r e  b e h i n d  
the shock wave and the motion of the shock front itself: 

a2p/at 2 = a 2 a ~ / a m  2, t > i  O, m ~ [0, ms (t) 1; (6 )  

p(O, t) = re(t); (7 )  

ms = %(p(ms, t), ms), m s ( 0 ) =  0; (8 )  

p ~1/2 ~2VO (~ -- ~ (m)) ( 9 )  
X(P,m)=a ~ 1  :, 6 ( m ) =  a(~) 

Here  m S ( t )  i s  t h e  L a g r a n g i a n  c o o r d i n a t e  o f  t h e  f r o n t ,  ~ ( t )  i s  t h e  s p e c i f i e d  p r e s s u r e  on t h e  
l e f t  b o u n d a r y  o f  t h e  b a r r i e r ,  and a(m)  i s  t h e  s p e c i f i e d  d e p e n d e n c e  o f  t h e  m a t e r i a l  p o r o s i t y  
on m. We assume  t h a t  t h e  i n h o m o g e n e i t y  o f  t h e  m a t e r i a l  i s  c o n t a i n e d  e n t i r e l y  in  t h e  f u n c t i o n  
a ( m ) .  We n o t e  t h a t  t h e  p r e s s u r e  f i e l d  b e h i n d  t h e  shock  wave i s  d e s c r i b e d  by  t h e  wave e q u a -  
t i o n  (6 )  w i t h  a = c o n s t ,  d e s p i t e  t h e  n o n u n i f o r m  h e a t i n g  o f  t h e  s h o c k - c o m p r e s s e d  m a t e r i a l .  

I na smuch  as  t h e  r i g h t  b o u n d a r y  o f  t h e  f l o w  r e g i o n  i s  unknown, Eq. (8 )  mus t  be augmen ted  
w i t h  an a d d i t i o n a l  c o n d i t i o n  a t  t h i s  b o u n d a r y .  For  i t s  d e r i v a t i o n  we c a l c u l a t e  t h e  v e l o c i t y  
i n c r e m e n t  du a t  t h e  r i g h t  b o u n d a r y  m S ( t )  d u r i n g  t h e  t i m e  d t  in  two ways ,  e x p r e s s i n g  t h e  i n -  
c r e m e n t  e a c h  t i m e  i n  t e r m s  o f  t h e  p r e s s u r e  and i t s  d e r i v a t i v e s .  T h i s  can  be done ,  on t h e  
one hand ,  by means o f  Eqs .  (4 )  and (5 )  and ,  on t h e  o t h e r ,  by i n v o k i n g  t h e  H u g o n i o t  r e l a t i o n s .  
E q u a t i n g  t h e  r e s u l t i n g  e q u a t i o n s  and making  n e c e s s a r y  t r a n s f o r m a t i o n s ,  we f i n d  t h e  c o n d i -  
t i o n  a t  t h e  unknown b o u n d a r y  

@(ms, o/a t  + ~Op(ms, t)lam = r (io) 

where 

= @ (p, m) = @ + 3a (m) @ + ~ (m) % (p' m); 

a%~ v % (p, m). = ~ (p,  m)  = a2 - (m) @ + 6 (m) 

We write the solution of Eq. (6) in the form 

p(m, t) = ](t - -  m/a) -k g(t -}- re~a), 

( i i )  

(12)  

(13) 

where f and g are arbitrary functions. It follows from Eqs. (8) and (9) that mS 5 a:, so that 
for mE [0, ms(t)], t ~ 0 (i.e., in the postshock flow region) the arguments of the functions 
f and g are nonnegative. It is clear from (7) that g(t) = m(t) - f(t), and so 

p(m,  t) = ]( t  - -  re~a) - -  ]( t  + re~a) + o~(t q-  m/a) .  (14) 
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Substituting the latter relation in condition (i0), we reduce the basic problem to the problem 
for a system of differential equations with one independent variable and a neutral-type deviat- 
ing argument [7]. A suitable candidate for the independent variable is the quantity ~ = t + 
:mS(t)/a, and we introduce the notation q(~) = 2mS(t)/a. We arrive at the problem for a system 
of two equations with two unknown functions q($) and f(~) (the prime denotes differentiation 
�9 with respect to the independent variable): 

2a . ( 1 5 )  ~! (B)  = 2 --a+----~' 

a--~f, a~ '  (16) 
] '  (D = ~ '  (D + a + r  (~ - -  ~ (D) - -  ~ - - ~ "  

Here ~ ~ 0; the initial set consists of the one point $ = 0; the conditions on the initial 
set are q(0) = 0, f(0) = 0 [the latter condition is adopted for convenience, but in reality 
the value of f(0) can be arbitrary]. On the right-hand sides of Eqs. (15) and (16), X, ~, 
and ~ are two-variable functions specified by Eqs. (9), (ii), and (12); the values of the 
arguments of these functions are equal to f(~ - q($)) - f(~) + m(~) anda 4(g)/2, respectively. 
The value of the argument of the function ~' in (16) is equal to aq($)/2. 

The solution of problem (15), (16) exists and is unique [8]. This problem can be solved 
numerically by varying $ with a certain step, but all the computed values of the function f(~) 
and its derivative must be stored; the values of f and f' required in each step for the de- 
layed values of the argument can be computed by interpolation. Once the function f($) has 
been found, the pressure field is determined according to (14). The method described here 
has the drawback that the functions m(t) and ~(m) must be smooth. 

Another approach to the solution of the basic problem (6)-(12) is possible, representing 
a variant of the method of the characteristics. In this approach, the functions m(t) and 
~(m) are assumed to be piecewise-constant (the number and size of the jumps are arbitrary). 
The functions f and g in Eq. (13) are also piecewise-constant. The f-jumps (i.e., the jumps 
of the function f) can be of two kinds, depending on their origin, namely they can be gener- 
ated by m-jumps or they can be induced by the reflection of g-jumps from the left boundary. 
Similarly, two kinds of g-jumps can occur: those generated by ~-jumps at the arrival time 
of the shock wave and those generated by f-jumps at the instant when they overtake the shock 
wave. The expressions for the sizes of the f- and g-jumps follow from the boundary condi- 
tions. 

Consequently, in place of the basic problem we have the problem of describing the motion 
of a system of jumps. This problem can be solved numerically by varying the time with a cer- 
tain step and computing the new jump parameters (with allowance for the generation of new 
jumps) and the coordinate of the shock front each time. The pressure field is determined 
according to (13) in each step. 

From the integral form of the momentum conservation law we obtain an equation for the 
velocity field: 

where u(ms, t) i =-~[PH(PH + 5)]I/2; the latter expression follows from (8) and (9), and the 

Hugoniot relations. 

From Eq. (4) and the relations at the shock front we deduce an expression for the specif- 
ic internal energy at an arbitrary point of the flow: 

t) = 5 [p (m, t) 6 (m) + p~ (m, t)L (17)  E (m, 

where ~ is the solution of the equation 

ms(t) = m .  (18) 

In regard to the evaluation of the shock-damping efficiency of a porous wall it is instruc- 
tive to consider the total energy converted irreversibly into heat or, more precisely, the 
total internal energy of the wall during its unloading (p = 0 for all m): 
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i l l  

w= f 
0 

PH (m) 6 (m) din, 
( 1 9 )  

where M is the Lagrangian coordinate of the end of the wall, pH(m) = p(m, x), and ~(m) is the 
solution of Eq. (18). 

We give the results of a calculation of the action of a loading pulse on a three-layer 
wall, for which 

~.(m) = 0, for m E  [t00, 200]~ ( 2 0 )  

for m ~ (200, 300]. 

The wall material is iron (with a porous middle layer), a = 2.91.107 , v 0 = 1.27.10 -4 , M = 
300 (corresponding to a wall thickness of 5.08 cm), and all dimensional quantities, unless 
otherwise indicated, are given in SI units. The pressure pulse is rectangular with an ampli- 
tude P0 = 101~ and a duration x = I0 -5 

The total energy transmitted to the wall by the pressure pulse is 

= -J' p (o, t)u (o, t)dt. ( 2 1 )  K 
0 

As a measure of the damping efficiency of the wall we adopt the kinetic energy remaining at 
the wall after its shock compaction (the lower the energy, the greater will be the shielding 
efficiency): I = K - W [see Eq. (19)]. We recall that the total momentum of the wall from 
the time of termination of the loading pulse up to the start of interaction of the wall with 
other objects remains constant. 

For the three-layer wall (20), K = 4.99.107 , W = 2.30.107 , and I = 2.69.107; for com- 
parison we point out that in the case of a homogeneous wall of a nonporous material having 
the same mass (thickness 3.81 cm), I = K = 3.44.107 , and W = 0. For a homogeneous porous 
wall having the same mass and thickness as the inhomogeneous wall (20), corresponding to a = 
0.75, we obtain K = 7.35.107 , W = 5.61.107 , and I = 1.74.107 . It is evident from these re- 
suits that the shock-damping efficiency of porous walls can be appreciable. 

PROBLEMS IN THE OPTIMAL CONTROL OF IMPACT 

The problem of impact onto an inhomogeneous porous wall has been formulated above in 
three different forms: A) a boundary-value problem for the wave equation with an unknown 
boundary, Eqs. (6)-(12); B) the same for a system of differential equations with a deviating 
argument, Eqs. (15), (16); C) the motion of a system of discontinuities (jumps). All three 
forms are equivalent from the physical point of view, and so for definiteness we proceed from 
problem A. A number of optimal control problems can be formulated on its basis, correspond- 
ing to different situations. We now discuss some of them. (Everywhere below we take our 
control functions from a certain sensibly chosen class of functions, e.g., from the set of 
piecewise-differentiable functions specified on an interval; we shall not make specific refer- 
ence to the class of allowed control functions below.) 

i. Let us consider the damping of an impulse load on a porous wall. We state the prob- 
lem of finding the optimum wall structure, i.e., the structure for which the kinetic energy 
remaining at the wall after shock transmission is a minimum for a given pressure pulse. In 
this situation the function ~(t) in problem A is specified, and e(m) is an unknown control 
function. We have 

I = =  K - - W - + m [ n ,  ( 2 2 )  

w h e r e  K and  W a r e  c a l c u l a t e d  a c c o r d i n g  t o  Eqs .  ( 2 1 )  and  ( 1 9 ) .  We f o r m u l a t e  t h e  c o n s t r a i n t s  
on t h e  v a l u e s  o f  t h e  p o r o s i t y  a and  on t h e  t o t a l  s i z e  o f  t h e  w a l l :  

c~(m) ~__ [~mln, I]; (23) 
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M t dm 

0 

(24) 

We thus have the optimal control problem (6)-(12), (22)-(24). 

2. We can also formulate the inverse of problem I: to determine the optimum pressure 
pulse in the penetration of a porous wall with a given structure. In this situation, the 
kinetic energy of the wall is maximized, ~(m) is given, and ~(t) is the control function. 
The constraints on the admissible control functions can differ here, depending on the specif- 
ic physical situation. 

3. Let us consider the following modification of problem i: to determine the damping 
of impact loading by a porous wall when the driver is an undeformable solid plate (in which 
the sound velocity is infinite) with a given mass Mp and initial velocity up0. In this case, 
the condition (7) on the left boundary in the basic problem A is replaced by the condition 

p(O~ t) + MpOu(O~ t)/Ot --  O, u(O, O) = upo , 

which follows from the equation of motion of the solid driver plate. The control function 
is the structure of the wall, ~(m). The total kinetic energy of the wall and the driver plate 
is minimized: 

t 2 ( 2 5 )  I = ~ M v u ~ o - - W ' - ~ m i n .  

(This optimality criterion is similar to the one used in [2].) The constraints on ~ are the 
same as in problem i. 

4. We now consider the problem of optimizing the damping of impact by a porous wall 
when the driver is also a porous plate (the structure of the driver plate is given). In this 
case, we replace the conditions (7) and u(m, 0) = 0 in the basic problem A by the initial 
and boundary conditions 

/Ui~o, m ~ [0, Mv)~ 
p (0~ t) = O~ u (m~ O) = [0, m ~ (M~, M]. 

The driver plate corresponds to the Lagrangian coordinate interval [0, Mp], and the target 
plate to the interval IMp, M]. The flow region has two unknown boundaries msp(t) and mS(t), 
which correspond to two shock waves (in the driver and in the target). Here ~(m), mE[0, Mp]~ 
is the given structure of the driver plate and ~(m), m~[Mp, M], is the control function (struc- 
ture of the target plate). The total kinetic energy of the driver and the wall is minimized 
according to Eq. (25). The constraints on the control function are the same here as in prob- 
!em i. 

5. We can formulate the inverse of problem 4: to determine the optimum structure of 
the driver in penetrating a porous wall with a given structure when the driver is also a por- 
ous plate. 

6. Let us consider the problem of optimizing the shock heating of a porous material, 
viz. : to determine for a given loading pulse (7) the wall structure ~(m) for which the aver- 
age temperature of a certain given part of the wall [ml, m 2] is a maximum after shock compac- 
t ion : 

~2 

W x = j' PH (m) 8 (m) dm - ~  max~ 
~'rt I 

where pH(m) is the same as in Eq. (19). 

7. A problem that arises in powder metallurgy in connection with the dynamic forming 
of porous metals and metal powders by a strong impact or explosion is the optimization of 
the structure of the initial porous blank from the point of view of eliminating residual 
stresses in the end product. For example, if we know the distribution of the internal energy 
(temperature) E0(m) in the compacted metal for minimization of the internal stresses after 
cooling of the product, we can formulate the problem of determining the structure of the blank 
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so as to minimize the deviation of the internal energy distribution of the material after 
compaction from the distribution E0(m): 

m �9 

= 1 E o (m)] dm ~ min.  I j' [,>~a 2. Pn (m) 6(ra)- 
O 

Here m(t) is a given function, and ~(m) is the control function (with the same constraints 
as in problem i). The condition u(M, t) = 0 can be used at the right boundary of the wall. 

We now consider the numerical solution of problem i (a similar approach can be applied 
to problems 2-7). Going over to the discrete analog of problem i, we consider a porous wall 
consisting of n homogeneous layers of equal mass with porosities ~i, ..., an. Here we use 
problem C in place of the basic problem A. This reduces the optimal control problem to the 
problem of minimizing the function of n variables I(~ I ..... an). The specific computation 
of I is carried out by solving problem C numerically. 

To solve the resulting mathematical programming problem we use the method of Hooke and 
Jeeves [i0] modified with regard for the constraints implied by (23) and (24): 

c*i ~ [C~mm, 1], i= i . . . . .  n; ( 2 6 )  

/ ( ~ )  = ~_~7.  <.~A = /max (27) 

where Am is the specific mass of each layer. The constraints (26) and (27) can be taken into 
account either by the method of penalty functions [9, Ill] or by the technique described below. 

In the Hooke-Jeeves algorithm the coordinates ~l .... , ~n are incremented successively 
by the amount • (E > 0). If the increment of the k-th coordinate does not decrease the ob- 
jective function, it is rejected (i.e., the previous value of ~k is restored). Coordinate 
increments that violate at least one of the constraints (26), (27) are also rejected (the same 
thing would happen with the introduction of penalty functions, i.e., terms in I that grow 
rapidly when the constraints are violated. 

The modification of the Hooke-Jeeves algorithm entails motion of the operating point 
parallel to the bounding hypersurface in the event of proximity to it, if the above-described 
steps do not result in a decrease of I. If the operating point is situated near the bounding 
hypersurface f(~) = A, there always exists at least one coordinate ~k that can be varied in 
both directions, i.e., the operating point is situated far from the bounder hyperplanes ~k = 
~min and ~k = i. In this case, if the successive increments of all the variables ~, ..., ~n 
are nonproductive (i.e., the value of I does not decrease), then a set of steps of the follow- 
ing form is made successively for all s # k: 

! 

A~zh-----~8 1 +  =~} , & z ~ =  - ~ h +  % czh§ d --c~t. ( 2 8 )  

The step (28) represents a shift of the Euclidean length e in the two-dimensional plane (~k, 
~s such that the point remains on the surface f(~) = const. If successive steps of the 
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form (28) also fail to yield a result, the size of the step ~ is diminished, and convergence 
is tested (the operating point is assumed to be the minimum point when E is smaller than the 
prescribed error). 

Following are the results of computations of the optimum structure of a damping porous 
wall for a rectangular pressure pulse with amplitude P0 = 101~ and duration t = I0 -s. The 
material of the wall is iron, and the specific mass of the wall M = 300. The admissible 
values of the porosity are ~ = 0.25-1. The wall thickness has the restriction s = 5.08 
cm (corresponding to the thickness of a homogeneous wall with ~ = 0.75). The ~ thickness 
is taken equal to 0.01. 

The computations for a three-layer structure (n = 3) gave the following optimum param- 
eters: el = 0.98, ~2 = 0.75, ~3 = 0.78, I = 1.67.107 , s = 4.62 cm. 

We next: carried out a more refined computation (n = i0). Since the Hooke-Jeeves algo- 
rithm implements a search for a local minimum, the minimum point can depend on the choice of 
initial approximation. It is evident from the computations that the optimum wall structure 
and the value of the objective functional are practically the same for a set of distinctly 
different initial approximations. Figure 1 shows the optimum structure of the porous wall 
for the initial approximation ~(m) = 0.9 = const (I = 2.98.107). The values of I and s in 
this case are practically the same as for the optimum three-layer structure. Figures 2 and 
3 show the computed dependences of the velocity of the loaded surface on the time and of the 
postshock pressure on the coordinate of the shock front for a porous wall with the optimum 
structure. 

The computations were repeated for various amplitudes and durations of the pressure pulse: 
P0 = (0.5-2) "101~ t = (0.75-1.5).10 -5 . It was found that for small values of the product 
po t (the total impulse transmitted to the wall) the optimum wall is practically a homogeneous 
wall with ~ = 0.75. The optimum wall structure shown in Fig. 1 is typical for intermediate 
values of the product po t . Finally, with a further increase in po t the optimum structure 
is typified by "broadening" of the maximum of ~(m) in the middle part of the wall. Figure 
4 shows the optimum structure of a porous wall for p = 2"10 z~ T = 1.25.10 -5 , and the ini- 

tial approximation ~(m) = 0.76 = const (I = 1.62.108). The optimum wall corresponds to a 
thickness s = 5.07 cm and a value of the objective functional I = 1.21.108. With an increase 
in the total impulse po T the gain in the value of the objective functional for the optimum 
structure (in comparison with a homogeneous porous wall for ~ = 0.75) improves considerably. 

Optima] control problems analogous to those discussed here can be formulated on the basis 
of a theory that admits partial compaction of a porous material in a shock wave [12, 13]. 
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SHOCK WAVE STRUCTURE IN A MIXTURE OF GAS AND MELTING PARTICLES 

A. V. Fedorov and V. M. Fomin UDC 532.529.5 

The process of fusion of solid particles dispersed within a gas flow occurs during vari- 
ous gasdynamic reactions in technical equipment. In particular, for noncalculable regimes 
in Laval nozzles, using a gas with solid combustion products of some fuel as a working medium, 
the structure of the shock wave which develops is complicated as compared to that of a shock 
wave propagating in a mixture of gas and particles without consideration of the phase transi- 
tion, because aside from the relaxation process of equalization of the temperatures of the 
phases, particle transition from the solid to the liquid state occurs with a finite relaxa- 
tion time. The driving force for this transition is the difference of the liquid concentra- 
tion from its equilibrium value. 

The structure of a shock wave in a mixture of gas with melting particles was studied 
in [i, 2] within the framework of single-velocity, single-temperature mechanics of hetero- 
geneous media with consideration of the nonequilibrium fusion process. The case in which 
the process of heat exchange between the phases occurs at a finite rate requires consideration 
based on a model which considers the difference between the temperatures of the phases. At 
the same time, considering the particles to be sufficiently small, and assuming that they 
are instantaneously carried off by the gas flow, we may conclude that the simplified model 
proposed in [3] will be adequate for the study of shock wave propagation in a mixture of gas 
with metal particles, with consideration of fusion. We will assume that the heat of phase 
transition L is independent of the fusion temperature, determined by the pressure of the mixture. 

i. Formulation of the Problem of Determination of Shock Wave Structure in the Mixture. 
Study of the Hugoniot Adiabat. We will consider the process of shock wave propagation in 
a mixture of gas and solid particles. The equations describing this phenomenon in a reference 
frame traveling with the shock wave have the form 

pu : cl, p + clu : c~, e + pv  + u2t2 = c~, ( 1 . 1 )  

~Rr 
P =  w , e = c v l T  + c , T  2 + L~, 

u ~  = •  u T 2  = q, .  o ~  = O33 = r 

(using the notation of [3]). We will use the source function 
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